Exercise 96

A cup of hot chocolate has temperature $80^{\circ} \mathrm{C}$ in a room kept at $20^{\circ} \mathrm{C}$. After half an hour the hot chocolate cools to $60^{\circ} \mathrm{C}$.
(a) What is the temperature of the chocolate after another half hour?
(b) When will the chocolate have cooled to $40^{\circ} \mathrm{C}$?

Solution

According to Newton's law of cooling, the governing equation for the temperature of the hot chocolate is

$$
\frac{d T}{d t}=-k(T-20),
$$

where 20 is the surrounding temperature. To solve this differential equation, make the substitution $y=T-20$. Then, differentiating both sides with respect to $t, \frac{d y}{d t}=\frac{d T}{d t}$.

$$
\frac{d y}{d t}=-k y
$$

Divide both sides by y.

$$
\frac{1}{y} \frac{d y}{d t}=-k
$$

Rewrite the left side as the derivative of a logarithm by using the chain rule.

$$
\frac{d}{d t} \ln y=-k
$$

The function you differentiate to get $-k$ is $-k t+C$, where C is any constant.

$$
\ln y=-k t+C
$$

Exponentiate both sides to solve for y.

$$
\begin{aligned}
e^{\ln y} & =e^{-k t+C} \\
y(t) & =e^{C} e^{-k t}
\end{aligned}
$$

Use a new constant A for e^{C}.

$$
y(t)=A e^{-k t}
$$

Now that the differential equation has been solved, change back to the original variable.

$$
T-20=A e^{-k t}
$$

As a result, the general solution for the temperature is

$$
T(t)=20+A e^{-k t} .
$$

Let $t=0$ be the time at which the temperature is $80^{\circ} \mathrm{C}$. Then $T(0)=80$ and $T(0.5)=60$.

$$
\left\{\begin{array}{l}
80=20+A e^{-k(0)} \\
60=20+A e^{-k(0.5)}
\end{array}\right.
$$

Solve the first equation for A,

$$
A=60,
$$

and substitute this result into the second equation.

$$
\begin{aligned}
60=20 & +60 e^{-0.5 k} \\
40 & =60 e^{-0.5 k} \\
\frac{2}{3} & =e^{-0.5 k} \\
\ln \frac{2}{3} & =\ln e^{-0.5 k} \\
-\ln \frac{3}{2} & =(-0.5 k) \ln e \\
k & =2 \ln \frac{3}{2}
\end{aligned}
$$

Therefore, the temperature of the hot chocolate after t hours is

$$
\begin{aligned}
T(t) & =20+A e^{-k t} \\
& =20+60 e^{-\left(2 \ln \frac{3}{2}\right) t} \\
& =20+60 e^{\ln \left(\frac{3}{2}\right)^{-2 t}} \\
& =20+60\left(\frac{3}{2}\right)^{-2 t} .
\end{aligned}
$$

Part (a)

The temperature of the chocolate after another half hour is

$$
T(1)=20+60\left(\frac{3}{2}\right)^{-2(1)}=\frac{140}{3} \approx 46.6667^{\circ} \mathrm{C} .
$$

Part (b)

To determine when the chocolate cools to $40^{\circ} \mathrm{C}$, set $T(t)=40$ and solve the equation for t.

$$
\begin{gathered}
T(t)=40 \\
20+60\left(\frac{3}{2}\right)^{-2 t}=40 \\
60\left(\frac{3}{2}\right)^{-2 t}=20 \\
\left(\frac{3}{2}\right)^{-2 t}=\frac{1}{3} \\
\ln \left(\frac{3}{2}\right)^{-2 t}=\ln \frac{1}{3} \\
(-2 t) \ln \left(\frac{3}{2}\right)=-\ln 3 \\
t=\frac{1}{2}\left(\frac{\ln 3}{\ln \frac{3}{2}}\right) \\
t \approx 1.35476 \text { hours }
\end{gathered}
$$

Convert 0.35476 hours to minutes.

$$
0.35476 \text { hours } \times \frac{60 \text { minutes }}{1 \text { hour }} \approx 21.2853 \text { minutes }
$$

Convert 0.2853 minutes to seconds.

$$
0.2853 \text { minutes } \times \frac{60 \text { seconds }}{1 \text { minute }} \approx 17.1203 \text { seconds }
$$

Therefore, the hot chocolate cools to $40^{\circ} \mathrm{C}$ about 1 hour and 21 minutes and 17 seconds after its temperature is $80^{\circ} \mathrm{C}$.

